14 Feb 2024

A strategy for the enzymatic acylation of polyphenols

In collaboration with Ghent University, CICbioGUNE and the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), we have developed an efficient strategy for the enzymatic acylation of polyphenols. It is based on a first α-glucosylation step catalyzed by a sucrose phosphorylase, followed by acylation using a lipase. The method was applied to phloretin, a bioactive dihydrochalcone mainly present in apples. Phloretin underwent initial glucosylation at the 4′-OH position, followed by subsequent (and quantitative) acylation with C8, C12, and C16 acyl chains employing an immobilized lipase from Thermomyces lanuginosus. Interestingly, C12 acyl-α-glucoside displayed an enhanced (3-fold) transdermal absorption (using pig skin biopsies) compared to phloretin and its α-glucoside.

Ref.: J.L. Gonzalez-Alfonso, C. Alonso, A. Poveda, Z. Ubiparip, A.O. Ballesteros, T. Desmet, J. Jiménez-Barbero, L. Coderch, and F.J. Plou. Strategy for the enzymatic acylation of the apple flavonoid phloretin based on prior α-glucosylation. J. Agric. Food Chem. (2024), https://doi.org/10.1021/acs.jafc.3c09261